• Density functional theory study of homologous organometallic molecules of the [RhXL2]2 (X=Cl, Br, or I); L=CO, PH3, or PF3) type.
    P. Seuret, J. Weber and T.A. Wesolowski
    Molecular Physics, 101 (16) (2003), p2537-2543
    DOI:10.1080/0026897031000112497 | unige:3502 | Abstract | Article PDF
 
Density functional theory generalized gradient approximation calculations, which were tested in our previous detailed study of [RhCl(PF3)2]2 (Seuret et al., 2003, Phys. Chem. chem. Phys., 5, 268-274), were applied for a series of homologous organometallic compounds of the [RhXL2]2 (X = Cl, Br, or I; L = CO, PH3, or PF3) type. Various properties of the studied compounds were obtained. Optimized geometries of [RhCl(PH3)2]2 and [RhCl(CO)2]2 are in very good agreement with available experimental data. Geometries of other compounds as well as other properties (thermochemistry of selected fragmentation channels, barriers to structural changes, frontier orbitals) which are not available experimentally were predicted. All the considered compounds are not planar. Enforcing planarity of the central [RhX]2 moiety requires only a small energetic cost ranging from 2.2 to 3.9 kcal mol-1. The analysis of frontier orbitals indicates that the metals provide the most favourable site for the electrophilic attack in all considered compounds. The analysis of the shape of the lowest unoccupied molecular orbitals indicates that the halogens and ligands provide the most favourable site for the nucleophilic attack for [RhCl(CO)2]2 or [RhCl(PF3)2]. For [RhBr(PF3)2]2, [RhI(PF3)2]2 and [RhCl(PH3)2]2, the nucleophilic attack on the halogen is less probable. Except for [RhCl(CO)2]2, the least energetically expensive decomposition channel involves initial separation of ligands. For [RhCl(CO)2]2, its decomposition into the RhCl(CO)2 fragments was found to be the least energetically expensive fragmentation reaction which is probably one of the reasons for the known catalytic activity of this compound.
Experimental and theoretical techniques have been applied to study the decomposition of the [RhCl(PF3)2]2 molecule which is known as a precursor in electron beam induced deposition (EBID) of Rh. Mass spectrometry (MS) has been carried out to study the electron ionisation and fragmentation of isolated molecules. Auger electron spectroscopy has been used to characterize the EBID deposit. The MS data indicate the presence of free phosphorus and rhodium ions. This is in agreement with the analysis of the composition of the EBID deposit containing: 60% Rh, 12–25% P, 2–13% Cl, no F, 3–20% O and N. Theoretical calculations (density functional theory) has been used to characterize the precursor molecule and to derive the enthalpies of several simple decomposition reactions. The calculated geometries are in a good agreement with the available X-ray crystallographic data. The [RhCl(PF3)2]2 appears not to be rigid: the PF3 groups can rotate with a relatively low barrier (0.6 kcal mol–1) whereas the barrier for the butterfly-like motion of (RhCl)2 moiety is only 3.5 kcal mol–1. According to the theoretical results, the lowest energy pathway of the decomposition corresponds to a consecutive loss of PF3 ligands, resulting in a (RhCl)2 moiety (without phosphorus). The same conclusion is also valid for the ionised precursor. Experimental data combined with the theoretical results concerning the energetics of the considered various simple decomposition processes indicate that the electron induced dissociation of the precursor cannot be seen as a simple one-step decomposition process.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024